Parameter Estimation in Stochastic

نویسنده

  • Rishi Srivastava
چکیده

Recent years have seen increasing popularity of stochastic chemical kinetic models due to their ability to explain and model several critical biological phenomena. Several developments in high resolution fluorescence microscopy have enabled researchers to obtain protein and mRNA data on the single cell level. The availability of these data along with the knowledge that the system is governed by a stochastic chemical kinetic model leads to the problem of parameter estimation. This thesis develops a new method of parameter estimation for stochastic chemical kinetic models. There are three components of the new method. First, we propose a new expression for likelihood of the experimental data. Second, we use sample path optimization along with UOBYQA-Fit, a variant of of Powell’s unconstrained optimization by quadratic approximation, for optimization. Third, we use a variant of Efron’s percentile bootstrapping method to estimate the confidence regions for the parameter estimates. We apply the parameter estimation method in an RNA dynamics model of E. coli. We test the parameter estimates obtained and the confidence regions in this model. The testing of the parameter estimation method demonstrates the efficiency, reliability and accuracy of the new method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

انجام یک مرحله پیش پردازش قبل از مرحله استخراج ویژگی در طبقه بندی داده های تصاویر ابر طیفی

Hyperspectral data potentially contain more information than multispectral data because of their higher spectral resolution. However, the stochastic data analysis approaches that have been successfully applied to multispectral data are not as effective for hyperspectral data as well. Various investigations indicate that the key problem that causes poor performance in the stochastic approaches t...

متن کامل

Ridge Stochastic Restricted Estimators in Semiparametric Linear Measurement Error Models

In this article we consider the stochastic restricted ridge estimation in semipara-metric linear models when the covariates are measured with additive errors. The development of penalized corrected likelihood method in such model is the basis for derivation of ridge estimates. The asymptotic normality of the resulting estimates are established. Also, necessary and sufficient condition...

متن کامل

Genetic Algorithm Sequential Monte Carlo Methods For Stochastic Volatility And Parameter Estimation

Particle filters are an important class of online posterior density estimation algorithms. In this paper we propose a real coded genetic algorithm particle filter (RGAPF) for the dual estimation of stochastic volatility and parameters of a Heston type stochastic volatility model. We compare the performance of our hybrid particle filter with a parameter learning particle filter present in litera...

متن کامل

Change Point Detection by Sparse Parameter Estimation

The contribution is focused on change point detection in a one-dimensional stochastic process by sparse parameter estimation from an overparametrized model. A stochastic process with change in the mean is estimated using dictionary consisting of Heaviside functions. The basis pursuit algorithm is used to get sparse parameter estimates. The mentioned method of change point detection in a stochas...

متن کامل

Simulating and Forecasting OPEC Oil Price Using Stochastic Differential Equations

The main purpose of this paper is to provide a quantitative analysis to investigate the behavior of the OPEC oil price. Obtaining the best mathematical equation to describe the price and volatility of oil has a great importance. Stochastic differential equations are one of the best models to determine the oil price, because they include the random factor which can apply the effect of different ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012